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A B S T R A C T

Purpose: Capturing the dynamics of sleep onset process is fundamental to sleep medicine and circadian neuro
biology. Even though wakefulness/sleep transition is a gradual and continuous process, it has been considered 
instantaneous and scored subjectively at low resolution. Therefore, a model to capture the dynamics of wake
fulness to sleep transition is needed. The purpose of this study is to develop an efficient, high-resolution, and 
reliable model to quantitatively capture the dynamics of wakefulness/sleep transition using electroencephalo
gram (EEG).
Methods: We collected EEG signals from 53 subjects during an overnight sleep study. We extracted relative power 
features from EEG to develop a new model that yields the likelihood of wakefulness for each of the 3-s EEG 
segments. Furthermore, using the model, we identified three clusters, namely wakefulness, drowsiness and sleep, 
and employed statistical analyses, cluster quality evaluation, and graphical analysis for validation.
Results: The proposed method successfully separated three distinct cases of alertness. The mean silhouette value 
on the test data was 0.74 and the mean Davies-Bouldin index value was 0.43, which indicated that the three 
discovered clusters were compact. Based on the silhouette values, the detection accuracy was 93.21 %. One-way 
repeated measures analysis of variance results suggested that the feature values were significantly different (p <
.0001) among the three detected clusters.
Conclusion: The proposed method was able to detect short episodes of wakefulness, drowsiness, and sleep with 
high accuracy in overnight polysomnography data. This proof-of-concept study suggests potential future appli
cations in drowsiness detection, pending validation in relevant contexts such as driving simulators and workplace 
environments.

1. Introduction

Modeling the sleep onset process is essential to characterize and 
detect disorders affecting the transition from awake to sleep, such as 
narcolepsy, insomnia, and sleep deprivation [1,2]. Similarly, the model 
can be helpful to study the transition from wakefulness to sleep in a more 
granular way to assess drowsiness and daytime sleepiness, which may 
occur due to sleep apnea or medications [3]. A high-resolution and 
efficient awake/sleep transition model to detect and potentially prevent 

drowsiness will contribute to workplace and road safety. However, 
scoring wakefulness and different stages of sleep has been traditionally 
performed by subjective inspection of physiological signals in discrete 
epochs of 30s [4]. Even though previous research found that the 30s 
epoch-based sleep scoring is too coarse to track sleep onset [2,5,6], only 
a few studies attempted to capture the dynamics of sleep onset quanti
tatively at a higher resolution [5,7]. Taken together, a high-resolution, 
quantitative, and data-driven model to track the sleep onset process is 
missing.
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Existing works in the literature have proposed metrics and algo
rithms to estimate sleep depth [7], to classify sleep stages [8–10], and 
detect drowsiness [11–24]. However, the majority of algorithms for 
sleep stage classification and sleep depth estimation is based on 30s 
epochs, which has no physiological basis [2,6]. Furthermore, re
searchers have developed drowsiness detection algorithms for moni
toring applications [24,25]. One of the main applications of drowsiness 
detection is during driving. Systems based on the driver's behavioral 
patterns such as eye-blink/-closure or head-nodding, neurophysiological 
signal measurements, or vehicle-based performance have been devel
oped [11,13,16,26–28]. However, these systems either have a low res
olution of more than 30 s to detect drowsiness [12,29–31], have a low 
sensitivity of <75 % [32], or are intrusive [33], affected by external 
conditions such as road geometry [24], driving patterns [24,33], and 
lighting [15,24,34]. For example, drowsiness detection algorithms that 
involve analyzing facial recordings or eye tracking measures rely on 
lighting conditions [34]. Similarly, vehicle-based parameters such as 
lane deviation are affected by external factors such as weather, traffic, 
road markings, and lighting conditions [15]. Additionally, some of the 
car manufacturers have developed customized fatigue monitoring sys
tems, which can only be integrated into their specific vehicles [15,24]. 
Therefore, a high-resolution and efficient drowsiness detection algo
rithm has not been established.

A high-resolution and efficient sleep onset process model can also be 
applied for sleep depth estimation and monitoring of the depth of 
anesthesia. The former application is essential for monitoring and 
diagnosing disorders of sleep onset such as insomnia, narcolepsy, 
hypersomnia, and sleep deprivation [1,5], whereas the latter is instru
mental in administering optimal levels of anesthetic doses during sur
gery and unraveling how various anesthetic drugs induce and maintain 
general anesthesia [35]. A high-resolution model that quantitatively 
captures the likelihood of alertness can also be employed for comput
erized sleep scoring and sleep quality assessment and automated arousal 
detection which is currently performed manually, making the process 
time-consuming, burdensome, and error-prone due to fatigue [36,37]. 
Therefore, there is a dire need to develop an efficient and 
high-resolution drowsiness detection model that captures 
awake-to-sleep transition across individuals.

Electroencephalography (EEG) measures have been used as the 
cardinal physiological signals for detecting drowsiness [7,16,18,21,28,
38]. EEG records the electrical activity of the brain and is often 
considered the “gold standard” for detecting wakefulness and different 
sleep stages in sleep studies [39,40]. Changes in wakefulness affect the 
alpha (8–13 Hz), delta (1–4 Hz), and beta (13–30 Hz) frequency bands of 
the EEG [1,2,5], and micro-sleep episodes that can be as short as 1s are 
often categorized as drowsiness [6]. Furthermore, most of the 
EEG-based studies [38,41] in the literature perform non-REM 1 detec
tion, even though it is a sleep stage, as opposed to being a transitional 
state between wakefulness and sleep. However, most of the EEG-based 
algorithms that aim to measure drowsiness use longer (30s-15 min) 
signal episodes for drowsiness detection [28,30,42–44] and are there
fore inappropriate to detect short episodes of drowsiness. Only a handful 
of existing studies [7,16,45,46] attempt to perform drowsiness detection 
at a higher resolution (<30s) Wei et al. [45] extracted EEG features in 
the frequency domain and performed detection at 6s resolution. How
ever, the algorithm was validated against vehicle parameters which tend 
to show road and subject-related variability. Peiris et al. [26] and 
Nguyen et al. [16] used short 2s windows for EEG processing, but their 
results showed an accuracy of less than 80 % to detect drowsiness. Lees 
et al. (2023) analyzed 2-s EEG epochs in train and non-professional 
drivers during monotonous driving tasks and found that increased 
self-reported fatigue and sleepiness correlated with reductions in theta, 
alpha, and beta EEG activity. In addition, Younes et al. [7] developed a 
3s-based sleep depth estimation metric (“odd ratio product”), but their 
study mainly focused on accurate sleep scoring and arousal detection 
rather than detecting drowsiness. Overall, there is still a need for a 

high-resolution and accurate model for drowsiness detection.
The primary aim of this study was to use EEG data collected from an 

overnight sleep study to develop a high-resolution and highly accurate 
model for detecting the transition from wakefulness to sleep. Compared 
to wakefulness, data collected during sleep are generally less noisy, with 
fewer artifacts such as eye movements. In addition, sleep data provide a 
large dataset for the initial development of drowsiness detection models 
which can later be trained and modified to be applied to other situations 
such as drowsy driving detection. Based on prior studies [2,5,47], we 
hypothesized that the changes in the alpha, beta, and delta frequency 
bands of the EEG can be used to develop a high-resolution and 
high-performance wake/sleep transition model.

2. Method

Data from 53 participants (26 females, Age: 49.58 ± 16.18), who 
were referred to the sleep laboratory of the Toronto Rehabilitation 
Institute-University Health Network for an overnight study to detect 
suspected sleep apnea were used. The study protocol was approved by 
the Institution's Research Ethics Board. Written informed consent was 
provided by all participants prior to participation in the study.

2.1. Sleep study protocol

The overnight study was conducted as part of clinical evaluation for 
suspected obstructive sleep apnea, with research data collected under 
informed consent. Participants attended the sleep laboratory at Toronto 
Rehabilitation Institute-University Health Network for a single over
night polysomnography study. Upon arrival (typically between 
8:00–9:00 p.m.), participants completed intake questionnaires and the 
PSG electrodes and sensors were applied by trained sleep technicians. 
Participants were then allowed to prepare for sleep, with recordings 
continuing throughout the night until the participant's natural wake 
time in the morning (typically 6:00–7:00 a.m.). Continuous monitoring 
was maintained throughout the night by sleep technologists.

2.2. Data recording

Sleep was assessed with a full attended overnight polysomnograhpy 
(PSG) using Embla® N7000/S4500 (Natus Medical Incorporated). 
Standard surface electrodes were applied to record EEG, electrocardio
gram (ECG), and electromyogram. EEG measures were recorded from six 
channels – two frontal (F3/F4), two central (C3/C4), and two occipital 
(O1/O2). The six channels were referenced against the mastoid elec
trodes (M1 and M2). Respiratory rate and volume were monitored using 
chest and abdominal respiratory inductance plethysmography bands, 
airflow was measured by nasal pressure cannula, and arterial oxyhe
moglobin saturation (SaO2) was recorded using pulse oximetry. Sleep 
stages and arousals were scored by an experienced sleep technician in 
accordance with standard rules published by the American Academy of 
Sleep Medicine (AASM) [4]. Respiratory arousals occur after a respira
tory event and are typically 3s long during which the participants are 
awake and alert [48].

2.3. Analysis of the EEG signal

2.3.1. Preprocessing
The EEG signal from all the channels were sampled at 128 Hz. First, 

the EEG data were bandpass filtered using a Butterworth filter with 
0.5–30 Hz cut-off frequencies to eliminate low-frequency movement 
noises while retaining the essential EEG frequency bands [5]. Second, 
the data were segmented using 3s window with no overlap such that at 
least 2 cycles of the lowest frequency band (i.e., delta: 1–4Hz) were 
retained. According to the AASM guidelines, awake and sleep stages are 
scored on 30s basis, with more than 50 % of the epoch consisting of 
either wakefulness or one of the sleep stages, respectively [5]. Since we 
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were trying to detect the drowsiness and wakefulness to sleep transition, 
all episodes which were rated as wakefulness and followed by non-rapid 
eye movement (non-REM) stage 1 (N1) of sleep were considered for 
model development and validation. For model validation only, we also 
used arousal segments (transient periods of wakefulness that occur 
during sleep) and deep sleep (non-REM 2 and 3) segments. Arousal 
segments are extreme cases of alertness, and the deep sleep segments are 
extreme cases of non-alertness. Therefore, we hypothesize that the 
model will yield high probability of wakefulness for arousal segments 
and low probability of wakefulness for deep sleep segments.

2.3.2. Feature extraction from EEG frequency bands
The spectrogram in Fig. 1 shows an example of the changes in the 

alpha and delta band powers at the sleep onset for a subject. Accord
ingly, we defined the relative power of alpha, delta, and beta bands as: 

Relative power of a band=
Average power of the band

Average power from 0.5 − 30 Hz
(1) 

2.3.3. Development of drowsiness detection model
We developed an awake probability model that used sigmoid func

tions to determine the probability of wakefulness (PrF(W)) based on the 
relative power values of the alpha, delta, and beta frequency bands 
extracted from the 3s signal segments. The sigmoid functions used in the 
model for each of the features are depicted in Fig. 2a. Since higher 
relative power of alpha and beta implies a higher PrF(W), the red sig
moid function was used to define changes in alpha and beta. On the 
other hand, the black sigmoid function was used to define changes in 
delta. The parameters a and b of the sigmoid function were defined such 
that the feature values less than a and larger than b had very high 
probability of being awake or sleep. Therefore, to choose a and b, we 
selected EEG data during arousals and deep sleep stages (non-REM 
stages 2 and 3) and divided them into training and testing data sets. To 
estimate parameter a, the relative power values of the deep sleep seg
ments were sorted and the maximum of the lower 80 % of data was set as 
a. Similarly, to estimate the parameter b, the relative power values of the 
arousal segments were sorted and the minimum of the higher 80 % of 
data was set as b.

After determining a and b, the relative power values of alpha, beta, 
and delta bands from the awake and N1 episodes in the training dataset 

were fed to the sigmoid model to estimate Pα, Pβ, and Pδ, respectively. 
Subsequently, the probability of wakefulness, Pr(W), for each 3s of data 
was defined as: 

Pr(W)=w1 × Pα + w2 × Pβ + w3 × Pδ (2) 

where weights w1, w2, and w3 were computed using out-of-bag (OOB) 
permuted predictor delta error method [49] (detailed in supplementary 
material).

2.3.4. Detection of drowsiness cluster
Since we employed overnight polysomnography data with expert 

sleep staging, our operational definition of drowsiness was based on 
EEG-derived sleep stages rather than independent behavioral measures. 
To differentiate wakefulness, drowsiness, and sleep episodes, the final 
step was to identify cut-off values of Pr(W) to determine the upper and 
lower bounds of the drowsiness cluster. Since we did not have inde
pendent behavioral gold standards (such as psychomotor vigilance test 
performance or subjective drowsiness ratings) to determine drowsy 
segments, we used cluster quality evaluation metrics, including Davies- 
Bouldin [50] and silhouette [51] indices to determine the upper and 
lower cut-offs of the drowsiness cluster. Davies-Bouldin index (DB) was 
defined as [50]: 

DB=
1
n
∑n

j=1

∑n

i=1,i∕=j
max

((
σi+σj

)

d
(
ci,cj

)

)

, (3) 

where n is the number of clusters, σi is the average distance of all points 
in cluster i to their cluster center ci, σj is the average distance of all points 
in cluster j to their cluster center cj, and d(ci, cj) is the distance of cluster 
centers ci and cj. Small values of Davies-Bouldin index correspond to 
clusters that are compact, and whose centers are far away from each 
other.

In addition, for each data point k, we computed the silhouette value s 
(k) as [51]: 

s(k)=

⎧
⎪⎪⎨

⎪⎪⎩

1 −
a(k)
b(k)

, a(k) < b(k)

b(k)
a(k)

− 1, a(k) ≥ b(k)
, (4) 

where a(k) is the average dissimilarity/distance of k to all other points 
within the same cluster, and b(k) is the lowest average dissimilarity of k 
to any other cluster, of which k is not a member. Silhouette value s(k) 
close to 1 suggests that the data point belongs to the proper cluster. On 
the other hand, silhouette value close to − 1 suggests that the particular 
data point was assigned to the wrong cluster.

To determine the lower and upper bounds of the drowsiness cluster, 
the upper and lower cut-offs were changed from 1 % to 99 %, and the 
bounds that resulted in most different clusters based on Davies-Bouldin 
index and silhouette values were selected.

2.3.5. Validation and statistical analysis
For training and validation of the proposed method, we randomly 

selected half of the participants as training dataset (n = 26) and the 
other half as testing dataset (n = 27). Using episodes of the awake and 
N1 sleep stage from the testing dataset, we first visually inspected the 
relative power distributions of alpha, delta, and beta frequency bands 
for the identified awake, drowsiness, and sleep clusters. To quantita
tively assess the clustering performance, we performed one-way 
repeated measures analysis of variance (ANOVA) to test if the three 
relative power feature values were significantly different among the 
three clusters. Significant main effects were followed up by post-hoc 
analysis (Tukey's multiple comparison tests). Furthermore, we 
computed the clustering quality evaluation metric values to validate the 
quality of the estimated clusters obtained from the awake and N1 sleep 
stage. Since there is no gold standard assessment of drowsiness for the 

Fig. 1. Spectrogram (3s window, 50 % overlap) of the first few minutes of EEG 
recording at channel F4 of a single participant. The F4 electrode was referenced 
against the left mastoid (M1). Based on the scoring by sleep technicians, the 
transition from wakefulness to N1 occurs at 4.5 min.
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sleep data, we used the silhouette values to compute the average 
wakefulness and drowsiness detection accuracy. For every 3s segment, a 
positive silhouette value indicated the segment as being correctly clas
sified while segments with negative silhouette values were considered as 
being misclassified. The data analyses were based on the EEG data ob
tained from the frontal F4-M1 electrodes, since wearable EEG head
bands commonly use frontal EEG [52,53]. Results from other EEG 
electrodes were presented in supplementary S3.

3. Results

3.1. Demographic information and segment statistics

For this study, we evaluated the data of 53 patients (26 females, Age: 
49.6 ± 16.2 years, BMI: 29.1 ± 6.2 kg/m2). Table 1 summarizes the 
number of 3s segments that were used for model development and 
validation.

3.2. Parameter and weight selection

In order to select the sigmoid parameters a and b, and to validate the 
efficacy of the sigmoid awake probability model, 304 arousal segments 
and 1267 deep sleep segments were selected from all the participants.

Fig. 2a shows the distribution of the relative power of the alpha band 
for the arousal and deep sleep segments of the training data. Fig. 2b and 
c graphically illustrate the estimation of the sigmoid parameter b and a 
respectively (b = 0.237, Fig. 2b, marked by the red arrow; a = 0.005, 
Fig. 2c, marked by the yellow arrow). Table 2 shows the sigmoid 
parameter values obtained for all features.

3.3. Cluster quality evaluation

For both training and test datasets, distribution of the estimated 
probabilities (Pr(W)) were significantly different for the arousal and 
deep sleep stages (Fig. 3a and b). In addition, the distributions could 
provide a rough estimate of the upper and lower bounds of the drows
iness cluster. For example, the segments with 28 %< Pr(W) < 65 % 
could belong to the drowsiness cluster. Therefore, the upper and lower 
boundaries of the clusters were validated by the Davies-Bouldin index 
(Eq (3)) and silhouette (Eq (4)) indices maps (Fig. 3c and d). Based on 
the training dataset, higher silhouette values were achieved if the lower 
cutoff of the drowsiness cluster was between 21 % and 30 % and the 
upper cutoff was between 54 % and 58 % (Fig. 3c). Similarly, in the test 
dataset, lower cutoff of 21 %–27 % and upper cutoff of 54 %–55 % 
resulted in the smaller Davies-Bouldin index (Fig. 3d). Therefore, the 
lower and upper cutoff of the drowsiness cluster were set to Pr(W) = 28 
% and 55 %, respectively.

For sleep clusters, relative power values of alpha and beta bands 
were smaller (Fig. 4a and b), and for awake clusters, the relative power 
values of alpha and beta were higher. On the other hand, the relative 
delta power was higher during sleep than awake clusters (Fig. 4c). 
Furthermore, the mean silhouette value of the three clusters was 0.74 
which is greater than the recommended value of 0.6 to consider the 
clusters separable [51]. Finally, the mean and maximum accuracies 
calculated using the silhouette values for detecting drowsiness were 
93.21 % and 94.73 % respectively.

The relative power values of alpha, delta, and beta bands were 
significantly different among sleep, drowsiness, and awake clusters 
(Fig. 5). As expected, post hoc tests showed that the alpha and beta 
power values were significantly higher during wakefulness compared to 
drowsiness and sleep (Fig. 5a and b). Similarly, the delta power was 

Fig. 2. (a) Sigmoid functions used in the proposed model. Probability of wakefulness for each feature (PrF(W)) should be high, if relative power values of alpha/beta 
are high. Therefore, the red curve is used to capture the changes in these two bands. The opposite scenarios are seen for delta band, which is why the black curve is 
used to compute PrF(W) from delta band. Panel (b) Sigmoid parameter b is selected as the minimum feature value of the arousal distribution after removing outliers. 
Panel (c) Sigmoid parameter a is selected the maximum feature value of the deep sleep distribution after removing outliers. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the Web version of this article.)

Table 1 
Average and standard deviation of the number of 3s segments from F4-M1 
used in this study for model development and validation. Data are pre
sented as mean ± standard deviation.

Stage Number of Segments per Participant

Arousal 5 ± 1
Deep sleep 23 ± 14
N1 396 ± 112
Awake 1447 ± 337

Table 2 
Sigmoid parameters computed from the training data for F4-M1.

Frequency band A B

Alpha 0.005 0.237
Beta 0.018 0.167
Delta 0.162 0.972
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significantly lower during wakefulness compared to drowsiness (0.15 ±
0.04 vs. 0.65 ± 0.02, p < .0001) and sleep (0.92 ± 0.03, p < .0001; 
Fig. 5c).

4. Discussions

The most important finding of our study was that, we achieved 94.7 
% to detect drowsiness with a resolution of 3 s. Using features from three 
EEG frequency bands, the model calculated wakefulness likelihood (Pr 
(W)) for 3-s EEG segments. Results confirmed our hypothesis: arousal 
segments showed high Pr(W), while deep sleep segments showed low Pr 
(W), validating the power-based features. The thresholded wakefulness 
likelihood values formed three clusters—wakefulness, drowsiness, and 
sleep—with consistent, statistically significant power distributions 
(Figs. 3b, 4 and 5). Beyond drowsiness detection, the model has po
tential applications in sleep depth and anesthesia monitoring.

Our findings align with previous work demonstrating that EEG 
spectral features track behaviorally-relevant changes in alertness. Pre
rau et al.47 showed that sleep onset involves parallel behavioral and 
physiological dynamics, with gradual changes in psychomotor vigilance 
task response times accompanying EEG spectral changes. Their work 
validates that EEG-based metrics can track behaviorally-measurable 
decrements in alertness, supporting our choice of spectral features 
(alpha, beta, and delta power). While our current study focuses on EEG- 
based classification validated against expert sleep staging, future work 
should incorporate behavioral performance measures (psychomotor 
vigilance tasks, subjective sleepiness scales, driving performance) to 
establish the relationship between our probability metric and functional 
impairment in alert-critical settings.

To the best of our knowledge, compared to the existing literature, our 
proposed algorithm had highest accuracy with a 3sec resolution to 
detect episodes of drowsiness only using EEG. For instance, previous 

studies using a combination of ocular features such as eye-closure and 
eye blink and EEG achieved very high accuracies of 92–99 %, but only 
with low resolutions of 1–5 min [18,42,54]. Similarly, combinations of 
EEG, EOG, and EMG signals showed high accuracies of 90–97 %, with 
1–5 min resolutions [19,30,55,56]. ECG and questionnaire-based 
studies also reported high accuracies of 90–93 % [12,14,29,57], but 
these methods require at least 5 min of data to detect drowsiness and are 
not objective measures due to the nature of questionnaires. Further
more, the studies that used sleep-EEG data to detect drowsiness had a 
resolution of 30s and accuracy values ranging from 83 to 97 % [10,28,
58]. On the other hand, the few studies that have detected drowsiness 
with resolutions of less than 30s have only shown accuracy values 
ranging from 60 to 70 % [16,21,32].

Most of the available algorithms to detect drowsiness use multiple 
physiological signals [16,19,30] [15,28,32,59], which can be inconve
nient for the user due to its intrusiveness. In this study, we have used a 
single frontal EEG electrode to detect drowsiness and have shown that 
similar results can be achieved for other EEG channels. Therefore, it may 
be concluded that the proposed method can be used to detect drowsiness 
using a single-channel EEG. Moreover, conventional clustering algo
rithms such as k-means or hierarchical clustering require hours of data 
to identify and separate groups or clusters of data [60]. In contrast, the 
sigmoid awake probability model, once trained, is capable of quanti
fying an arbitrary 3s episode as wakefulness, drowsiness or asleep – 
therefore making it a high-resolution algorithm. Furthermore, prior 
studies have shown that inter-rater disagreement for sleep scoring could 
be up to 20 % [2]. Also, a technician's scoring accuracy is subject to bias 
and error due to fatigue. Unlike the existing sleep study-based drowsi
ness detection algorithms, our proposed scheme, once trained, is inde
pendent of sleep technician's labels.

Despite the availability of various drowsiness detection measures, 
EEG has been the most widely used measure [56]. Previous studies 

Fig. 3. Pr(W) distribution of arousal and deep sleep segments of (a) training data and (b) testing data obtained by weights and sigmoid parameters computed from 
the training data. The proposed model yields lower Pr(W) for deep sleep segments and higher Pr(W) for arousal segments in the testing data, which indicates its 
efficacy. (c) Silhouette and (d) Davies-Bouldin index values computed from the 3s segments of awake and N1 data obtained from the training participants. For both 
maps, the upper and lower bounds of the drowsy cluster have been varied and the two metrics were computed for the awake, sleep, and drowsy clusters.
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found that the most important EEG features in detecting drowsiness are 
the powers of alpha and theta bands [28]. Furthermore, prior studies 
have shown that when an individual transitions from wakefulness to N1 
sleep, the alpha and beta band powers decrease while the delta band 
power increases [1,5]. Accordingly, in this study, the relative powers of 

alpha, beta, and delta bands in the EEG were used to train our model in 
detecting drowsiness.

An important distinction between our study and recent work such as 
Lees et al. (2023) is that they validated their 2-s epoch EEG analysis 
against multiple independent behavioral measures during monotonous 

Fig. 4. Distributions of relative power of (a) alpha, (b) beta, and (c) delta for three clusters of awake, drowsy and sleep. Here, all episodes of N1 and wakefulness 
were considered. The sleep segments (Pr(W) < 28) have low alpha and beta power and high delta power, while awake segments (Pr(W) > 55) have high alpha and 
beta power and low delta power.

Fig. 5. Post hoc multiple comparison test suggests that (a) alpha, (b) beta, and (c) delta power features are significantly different between the clusters. Error bars 
indicate standard deviation. * indicates p < .0001.
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driving tasks, finding negative correlations between EEG band activity 
and self-reported fatigue/sleepiness scores. This approach directly es
tablishes the relationship between physiological markers and 
subjectively-experienced drowsiness states during active task perfor
mance. In contrast, the novelty of our proposed method is the use of the 
sigmoid function to model awake probability. The sigmoid function used 
in this study has been extensively used in neural networks and is often 
referred to as the special case of the logistic function [61]. It is 
non-linear in nature and gives an analog activation, unlike the step 
function. In between the sigmoid parameter values a and b, the output 
(prediction) changes significantly for a small change in input (feature 
values). Therefore, the selection of the sigmoid parameter values is very 
crucial. In this work, we utilized arousals as extreme cases of alertness 
and deep sleep segments as extreme cases of non-alertness to select the 
sigmoid parameters for our probability model. For a particular EEG 
frequency band, for example alpha, the parameters a (0.005) and b 
(0.237) were selected such that the probability of deep sleep and 
wakefulness below or above that value were the highest, respectively. 
The choices of the parameters were verified by the ability of the model to 
identify and separate the 3 clusters wakefulness, drowsiness, and sleep, 
as well as the statistically significant differences in the feature values 
among the clusters. Therefore, sigmoid function was able to capture the 
sleep onset dynamics empirically using the three relative power features 
computed from EEG.

Most of the existing works in the literature [16,30,32,42] do not 
randomize their training and testing data which might indicate that the 
reported performance metric values cannot be generalized. To overcome 
this limitation, in each iteration, we selected a percentage of the par
ticipants as training and the remainder as testing. This made sure that 
the results reported herein are robust, and the performance of the pro
posed model is generalizable. This data setting also has a benefit in terms 
of practical application. When implementing, the algorithm does not 
need to be trained but can be pre-trained on pre-existing data.

For model development, we also experimented with the theta (4–7 
Hz) and gamma (30–100 Hz) oscillations, but their inclusion did not 
improve performance. We did not find consistent power changes in these 
bands at sleep onset. While some existing works [5,28] employ theta 
oscillations, our subjects were actively trying to fall asleep rather than 
stay alert, which may explain the lack of prominent theta band changes. 
Additionally, our 128 Hz sampling rate (64 Hz Nyquist frequency) did 
not capture the full gamma spectrum (30–100 Hz), limiting its utility as 
a feature.

This study has some limitations. Currently, there are no established 
guidelines on how to score drowsiness. Consequently, drowsy episodes 
were not scored by the technicians during the sleep study, but were 
instead defined as the period between wakefulness and N1 sleep. As a 
result, the exact start and end point of drowsy episodes remain un
known. In the future, a proposed model should be validated against 
video-based scales of drowsiness [62]. Furthermore, in active situations 
wherein the subject is trying to stay alert, the EEG data might be noisy 
due to movement and eye blink. Another limitation of the model is that 
it cannot detect drowsy episodes that are shorter than 3s. While the 
resolution is higher than most of the existing EEG-based works in the 
literature, lapses or microsleeps can be as short as 1s or even less [6]. 
The inclusion of features based on the delta band, which ranges from 1 
to 4 Hz, necessitates the use of signal segments that are at least 2s or 
longer.

A significant limitation is that our drowsiness classification is defined 
and validated using EEG-based criteria (expert sleep staging) rather than 
independent behavioral or performance measures. The high accuracy 
we report (93.21 %) represents concordance with expert EEG-based 
sleep staging rather than prediction of independent behavioral out
comes. Future validation of drowsiness detection for safety-critical ap
plications requires demonstration that our EEG-based probability metric 
predicts functionally-relevant outcomes such as impaired vigilance task 
performance, subjective sleepiness ratings, driving performance 

decrements, or real-world safety outcomes.
Our current study establishes proof-of-concept in a controlled clin

ical setting. However, validation in alert-critical environments is 
essential before clinical or commercial deployment. The overnight sleep 
study context provided advantages for initial model development, but 
wakefulness during daytime alert tasks differs from pre-sleep wakeful
ness. Future validation must occur in driving simulators, real-world 
scenarios, and populations with excessive daytime sleepiness, and the 
model may require recalibration for these contexts.

While we focused on frontal electrodes (F3-M2, F4-M1) to align with 
emerging wearable EEG devices, we did not systematically compare 
performance across different electrode montages. Additionally, 
approximately 10 % of the population exhibits low-amplitude or absent 
alpha rhythm, which may affect model performance and requires spe
cific validation.

The practical implementation in real-world settings depends on 
wearable EEG technology advancement. Our frontal electrode focus was 
motivated by emerging wearable devices that can acquire frontal EEG in 
naturalistic settings. However, limitations must be addressed including 
signal quality in motion-heavy environments, user acceptance, power 
consumption, real-time processing capabilities, and regulatory 
approval. Successful translation will require co-development of algo
rithm and hardware solutions with validation in target environments.

5. Conclusion

In the present study, we have developed a single-channel EEG based 
high-resolution model to quantitatively capture the gradual transition 
from wakefulness to sleep using frontal EEG channels. The model 
demonstrated high accuracy in distinguishing wakefulness, drowsiness, 
and sleep states in 3-s epochs during overnight sleep studies. This 
approach offers a foundation for future drowsiness detection systems, 
though significant additional validation work is needed before deploy
ment in applied settings.

Future research should focus on: (1) validating the model in alert- 
critical environments with concurrent behavioral measures, (2) testing 
generalizability across diverse populations including those with sleep 
disorders, (3) adapting the model for real-time wearable applications, 
and (4) investigating applications in clinical sleep medicine such as 
automated arousal detection and sleep depth monitoring. With appro
priate validation, this high-resolution approach may eventually 
contribute to improved road safety, workplace accident prevention, and 
clinical sleep assessment.
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